- Put your name on every sheet of paper you intend to hand in.
- Please provide complete arguments for all of your answers. The exam consists of 3 problems. You obtain 3 points for free, and up to 27 points for the problems you are supposed to hand in. In this way you will score in total between 3 and 30 points; your final grade is obtained by dividing this by 3 .
(1) This is an exercise concerning Legendre symbols $\left(\frac{a}{p}\right)$ for an odd prime p. Specifically, we take $a \in \mathbb{Z}$ such that $a^{2} \equiv-1 \bmod p$; such an a exists whenever the prime p is congruent to 1 modulo 4 .
(a) [1 point] Find one such a for $p=13$ and compute $\left(\frac{a}{p}\right)$.
(b) [2 points] Given a prime $p \equiv 1 \bmod 4$, show that every $a \in \mathbb{Z}$ with the property $a^{2} \equiv-1 \bmod p$ yields the same value $\left(\frac{a}{p}\right)$.
(c) [3 points] For arbitrary a and p as above, use $(1+a)^{2} \bmod p$ to show that $\left(\frac{a}{p}\right)=\left(\frac{2}{p}\right)$.
(d) [3 points $]$ Use (c) to show that $\left(\frac{2}{p}\right)=\left\{\begin{aligned} 1 & \text { if } p \equiv 1 \bmod 8 ; \\ -1 & \text { if } p \equiv 5 \bmod 8 .\end{aligned}\right.$
(2) We consider the splitting field K of $x^{20}-1$ over \mathbb{Q}.
(a) $[1+1+1$ points $]$ Show that each of the polynomials $x^{2}+1, x^{2}-5$, and $x^{2}+5$ is reducible in $K[x]$.
(b) [3 points] Show that if an integer n has the property that $x^{2}+n$ is reducible in $K[x]$, then either $|n|$ or $|5 n|$ is a square (in \mathbb{Z}).
(c) [3 points] Prove that $K(\sqrt{2})$ is a splitting field of $x^{40}-1$ over \mathbb{Q}. (Hint: compare degrees and show an inclusion.)
(3) This problem concerns tensor products. If R, S are commutative rings and $f: R \rightarrow S$ a ring homomorphism, then one obtains the structure of an R-module on $(S,+, 0)$ by using the scalar multiplication $R \times S \rightarrow S$ given by $(r, s) \mapsto f(r) \cdot s$. If M is any R-module, then $S \otimes_{R} M$ is an S-module with scalar multiplication defined by $s \cdot\left(\sum s_{j} \otimes m_{j}\right)=\sum\left(s s_{j}\right) \otimes m_{j}$ (you don't need to prove these assertions).
(a) [3 points] Given $f: \mathbb{Z} \rightarrow \mathbb{Q}$ the inclusion, and the \mathbb{Z}-module $M=\mathbb{Q} / \mathbb{Z}$, determine $\mathbb{Q} \otimes_{\mathbb{Z}} M$.
(b) [3 points] For $A=\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$, determine the dimension of the vector space $\mathbb{Q} \otimes_{\mathbb{Z}} A$ over \mathbb{Q}.
(c) [3 points] Now take a prime number p and let $f: \mathbb{Z} \rightarrow \mathbb{F}_{p}$ be the canonical ring homomorphism. With B any \mathbb{Z}-module, show that $\mathbb{F}_{p} \otimes_{\mathbb{Z}} B \cong B / p B$.

