EXAM ADVANCED ALGEBRAIC STRUCTURES, April 13th, 2022, 8:30–10:30 (CEST).

- Put your name on every sheet of paper you intend to hand in.
- Please provide complete arguments for all of your answers. The exam consists of 3 problems. You obtain 3 points for free, and up to 27 points for the problems you are supposed to hand in. In this way you will score in total between 3 and 30 points; your final grade is obtained by dividing this by 3.
- (1) This is an exercise concerning Legendre symbols $\left(\frac{a}{p}\right)$ for an odd prime p. Specifically, we take $a \in \mathbb{Z}$ such that $a^2 \equiv -1 \mod p$; such an a exists whenever the prime p is congruent to 1 modulo 4.
 - (a) [1 point] Find one such a for p = 13 and compute $\left(\frac{a}{p}\right)$.
 - (b) [2 points] Given a prime $p \equiv 1 \mod 4$, show that every $a \in \mathbb{Z}$ with the property $a^2 \equiv -1 \mod p$ yields the same value $\left(\frac{a}{p}\right)$.
 - (c) [3 points] For arbitrary a and p as above, use $(1+a)^2 \mod p$ to show that $\left(\frac{a}{p}\right) = \left(\frac{2}{p}\right)$.

(d) [3 points] Use (c) to show that
$$\binom{2}{p} = \begin{cases} 1 & \text{if } p \equiv 1 \mod 8; \\ -1 & \text{if } p \equiv 5 \mod 8. \end{cases}$$

- (2) We consider the splitting field K of $x^{20} 1$ over \mathbb{Q} .
 - (a) [1 + 1 + 1 points] Show that each of the polynomials $x^2 + 1$, $x^2 5$, and $x^2 + 5$ is reducible in K[x].
 - (b) [3 points] Show that if an integer n has the property that $x^2 + n$ is reducible in K[x], then either |n| or |5n| is a square (in \mathbb{Z}).
 - (c) [3 points] Prove that $K(\sqrt{2})$ is a splitting field of $x^{40} 1$ over \mathbb{Q} . (Hint: compare degrees and show an inclusion.)
- (3) This problem concerns tensor products. If R, S are commutative rings and $f: R \to S$ a ring homomorphism, then one obtains the structure of an R-module on (S, +, 0)by using the scalar multiplication $R \times S \to S$ given by $(r, s) \mapsto f(r) \cdot s$. If M is any R-module, then $S \otimes_R M$ is an S-module with scalar multiplication defined by $s \cdot (\sum s_j \otimes m_j) = \sum (ss_j) \otimes m_j$ (you don't need to prove these assertions).
 - (a) [3 points] Given $f: \mathbb{Z} \to \mathbb{Q}$ the inclusion, and the \mathbb{Z} -module $M = \mathbb{Q}/\mathbb{Z}$, determine $\mathbb{Q} \otimes_{\mathbb{Z}} M$.
 - (b) [3 points] For $A = \mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, determine the dimension of the vector space $\mathbb{Q} \otimes_{\mathbb{Z}} A$ over \mathbb{Q} .
 - (c) [3 points] Now take a prime number p and let $f: \mathbb{Z} \to \mathbb{F}_p$ be the canonical ring homomorphism. With B any \mathbb{Z} -module, show that $\mathbb{F}_p \otimes_{\mathbb{Z}} B \cong B/pB$.